sexta-feira, 13 de setembro de 2019


Número de Biot (Bi) é um parâmetro adimensional e fornece um índice simples da razão entre o coeficiente de transferência convectiva de calor na superfície do sólido e a condutância específica do sólido, a razão das resistências dentro de e na superfície de um corpo.
Esta razão determina se ou não as temperaturas dentro de um corpo variam significativamente no espaço, enquanto o corpo se aquece ou arrefece ao longo do tempo, a partir de um gradiente térmico aplicado à sua superfície.
É usado em cálculos de transferência térmica em estado não estacionário (ou transiente). É nomeado em honra ao físico francês Jean-Baptiste Biot (1774–1862).
A hipótese de temperatura uniforme no interior do sólido é válida se a condutância específica do sólido for muito maior do que o coeficiente de transferência convectiva de calor.

    Definição[editar | editar código-fonte]

    O número de Biot é definido como:
    X

    FUNÇÃO FUNDAMENTAL E GERAL DE GRACELI.

    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

    x
     [EQUAÇÃO DE DIRAC].

     + FUNÇÃO TÉRMICA.

       +    FUNÇÃO DE RADIOATIVIDADE

      ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

      + ENTROPIA REVERSÍVEL 

    +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

     ENERGIA DE PLANCK

    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
    • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
      x
    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D
    Onde:
    X

    FUNÇÃO FUNDAMENTAL E GERAL DE GRACELI.

    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

    x
     [EQUAÇÃO DE DIRAC].

     + FUNÇÃO TÉRMICA.

       +    FUNÇÃO DE RADIOATIVIDADE

      ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

      + ENTROPIA REVERSÍVEL 

    +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

     ENERGIA DE PLANCK

    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
    • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
      x
    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D
    O número de Biot é usado para definir o método a ser utilizado na solução de problemas de transferência de calor transiente.
    • Se Bi > 0,1 : usa-se as cartas de temperatura transiente
    • Se Bi < 0,1 : usa-se a análise
    Em geral, problemas envolvendo pequenos números de Biot (muito menores que 1) são termicamente simples, devido a campos de temperatura uniformes dentro do corpo. Números de Biot muito maiores que 1 apontam problemas de maior dificuldade devido a não uniformidade dos campos de temperatura dentro do objeto.
    O número de Biot tem uma variedade de aplicações, incluindo o uso em cálculos de transferência de calor em superfícies estendidas. O significado físico do número de Biot pode ser razoavelmente compreendida imaginando-se o fluxo de calor a partir de uma pequena esfera de metal quente, repentinamente imerso em uma piscina, para o fluido circundante. O fluxo de calor experimenta duas resistências: a primeira dentro do metal sólido (a qual é influenciada tanto pelo tamanho como pela composição da esfera), e o segundo na superfície da esfera. Se a resistência térmica da interface fluido/esfera excede aquela resistência térmica oferecida pelo interior da esfera metálica, o número de Biot será menor que um. Para sistemas onde é muito inferior a um, o interior da esfera pode ser presumido como sempre tendo a mesma temperatura, embora esta temperatura possa estar mudando, na medida em que o calor passa para a superfície da esfera. A equação para descrever essa mudança de (relativamente uniforme) temperatura dentro do objeto, é uma exponencial simples descrita na lei de Newton do resfriamento.
    Em contrapartida, a esfera de metal pode ser grande, fazendo com que o comprimento característico aumente a tal ponto que o número de Biot é maior que um. Agora, gradientes térmicos dentro da esfera tornam-se importantes, apesar de o material da esfera ser um bom condutor. Equivalentemente, se a esfera é feita de um material isolante (pobremente condutivo), tal como madeira ou "isopor", a resistência interna ao fluxo de calor vai superar a da contorno fluido/esfera, mesmo com uma esfera muito menor. Neste caso, novamente, o número de Biot será maior do que um.

    Aplicações[editar | editar código-fonte]

    Valores do número de Biot menores que 0,1 implicam que a condução de calor dentro do corpo é muito mais rápida que a convecção de calor a partir de sua superfície, e gradientes de temperatura são negligenciáveis dentro dele. Isto pode indicar a aplicabilidade (ou inaplicabilidade) de certos métodos de resolver problemas de transferência de calor transiente. Por exemplo, um número de Biot menor que 0,1 indica tipicamente que 5% de erro irá estar presente quando presupõe-se um modelo discreto de capacitância de transferência de calor transiente (também chamado de análise discreta de sistema).[1][2] Normalmente este tipo de análise leva a um comportamento exponencial simples de aquecimento ou resfriamento (aquecimento ou resfriamento "Newtonianos") uma vez que a quantidade de energia térmica (vulgarmente, quantidade de "calor") no corpo é diretamente proporcional a sua temperatura, a qual por sua vez determina a taxa de transferência de calor para dentro ou para fora dele. Isso leva a uma simples equação diferencial de primeira ordem que descreve a transferência de calor nestes sistemas.
    Tendo-se um número de Biot menor que 0,1 caracteriza uma substância como "termicamente fina", e o calor pode ser considerado constante em todo o volume do material. O oposto é também verdadeiro: Um número de Biot maior que 0,1 (uma substância a "termicamente espessa") indica que não pode-se fazer esta presuposição, e equações de transferência de calor mais complicadas para "transferência de calor transiente" irão ser requeridas para descrever o campo de temperatura variante no tempo e não espacialmente uniforme dentro do corpo material.[3]

    Análogo para a transferência de massa[editar | editar código-fonte]

    Uma versão análoga do número de Biot (usualmente chamado o "número de Biot de transferência de massa", ou ) é também usado em processos de difusão de massa:
    X

    FUNÇÃO FUNDAMENTAL E GERAL DE GRACELI.

    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

    x
     [EQUAÇÃO DE DIRAC].

     + FUNÇÃO TÉRMICA.

       +    FUNÇÃO DE RADIOATIVIDADE

      ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

      + ENTROPIA REVERSÍVEL 

    +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

     ENERGIA DE PLANCK

    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
    • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
      x
    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D
    onde:
    • hm - coeficiente de película de transferência de massa
    • LC - comprimento característico
    • DAB - difusividade de massa.
    O número de Biot de transferência de massa pode ser interpretado como a razão entre a resistência interna e a resistência externa à transferência de massa por difusão.[4][5] Quanto maior o valor de , menor será a influência da resistência externa sobre o mecanismo de difusão. Se Bi > 200, o erro relativo no cálculo do coeficiente de difusão, devido ao fato de se desprezar a resistência externa, é considerado menor do que 1%.[6]
    Este número adimensional específico é muito importante na indústria de produção de alimentos, como por exemplo, para ter-se o controle da quantidade de cloreto de sódio retida em determinados produtos, como o queijo.[7]


    Em física e engenharia, o número de Fourier (Fo) ou módulo de Fourier, em homenagem a Joseph Fourier, é um número adimensional que caracteriza a condução de calor. Conceptualmente, é o rácio entre a taxa de condução de calor para a taxa de armazenamento de energia térmica. É um número adimensional, que tal como o número de Biot, que caracteriza os problemas de condução transiente, sendo definido como:[1]
    X

    FUNÇÃO FUNDAMENTAL E GERAL DE GRACELI.

    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

    x
     [EQUAÇÃO DE DIRAC].

     + FUNÇÃO TÉRMICA.

       +    FUNÇÃO DE RADIOATIVIDADE

      ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

      + ENTROPIA REVERSÍVEL 

    +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

     ENERGIA DE PLANCK

    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
    • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
      x
    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D
    onde,



    Em física, a equação do calor é um modelo matemático para a difusão de calor em sólidos. Este modelo consiste em um equação de derivadas parciais que muitas vezes é também chamada de equação da difusão (térmica).
    A equação do calor prediz que se um corpo a uma temperatura T é submerso em um recipiente com água a menor temperatura, a temperatura do corpo diminuirá, e finalmente (teoricamente depois de um tempo infinito, e sempre que não existam fontes de calor externas) a temperatura do corpo e a da água serão iguais (estarão em equilíbrio térmico).
    Existem diversas variações da equação do calor. Na sua forma mais conhecida, ela modela a condução de calor em um sólido homogêneoisotrópico e que não possua fontes de calor, e é escrita:
    X

    FUNÇÃO FUNDAMENTAL E GERAL DE GRACELI.

    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

    x
     [EQUAÇÃO DE DIRAC].

     + FUNÇÃO TÉRMICA.

       +    FUNÇÃO DE RADIOATIVIDADE

      ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

      + ENTROPIA REVERSÍVEL 

    +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

     ENERGIA DE PLANCK

    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
    • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
      x
    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D
    Aqui,  representa o campo de temperaturas e é a função incógnita.  é o coeficiente de difusão térmica.
    Na presença de fontes de calor, a equação toma a seguinte forma:
    X

    FUNÇÃO FUNDAMENTAL E GERAL DE GRACELI.

    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

    x
     [EQUAÇÃO DE DIRAC].

     + FUNÇÃO TÉRMICA.

       +    FUNÇÃO DE RADIOATIVIDADE

      ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

      + ENTROPIA REVERSÍVEL 

    +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

     ENERGIA DE PLANCK

    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
    • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
      x
    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D
    A equação do calor é de uma importância fundamental em numerosos e diversos campos da ciência. Na matemática, são as equações parabólicas em derivadas parciais por antonomásia. Na estatística, a equação do calor está vinculada com o estudo do movimento browniano através da equação de Fokker–Planck. A equação de difusão, é uma versão mais geral da equação do calor, e relaciona-se principalmente com o estudo de processos de difusão química.
















    FUNÇÃO FUNDAMENTAL E GERAL DE GRACELI.

    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

    x
     [EQUAÇÃO DE DIRAC].

     + FUNÇÃO TÉRMICA.

       +    FUNÇÃO DE RADIOATIVIDADE

      ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

      + ENTROPIA REVERSÍVEL 

    +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

     ENERGIA DE PLANCK

    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
    • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
      x
    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D